Virus Induced RNA Silencing and Suppression: Insights from Viral Infection

Speaker: Amrita Banerjee, Ph.D.

Post-transcriptional gene silencing (PTGS) or RNA interference (RNAi)

- It is the manifestation of an evolutionary conserved process known as "RNA silencing".
- Over the last few years RNA silencing has become intensively studied biological system.
- Initially being discovered as a side effect of transgene expression in plants and a process by which transgenic virus resistance could be obtained, it has since been implicated in natural virus resistance and basic biological processes.
- In the plant cell RNA silencing, that act as antiviral defense during infection of virus and sub-viral pathogens, termed as virus induced gene silencing (VIGS).

? How viruses and related parasitic genetic elements induce RNA silencing

? How they suppress or evade this process

? What are the consequences of this for the host

RNA silencing refers to related homology dependent gene silencing mechanisms in plants and animals guided by small RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs).

Basic Principle of RNA silencing

RNA silencing activated by

double stranded RNA (dsRNA)

21-24bp long RNA duplexes - the small interfering (si)RNA -

by the RNase III enzyme "Dicer"

Initially tobacco ringspot virus infected leaves of tobacco were necrotic, but the upper leaves had somehow become immune to the virus and consequently were asymptomatic and resistant to secondary infection (Wingard, 1928).

At that time this "recovery" was a mystery.

Not much later, McKinney during 1929 reported that tobacco plants infected with the "green" strain of tobacco mosaic virus (TMV) were protected against infection by a closely related second virus i.e. "yellow" strain of TMV (McKinney, 1929).

This phenomenon was later described as "cross protection".

JOURNAL OF AGRICULTURAL RESEARCH

37 WASHINGTON, D. C., AUGUST 1, 1928 No.

HOSTS AND SYMPTOMS OF RING SPOT, A VIRUS DISEASE OF PLANTS¹ By S. A. WINGARD² Associate Plant Pathologist, Virginia Agricultural Experiment Station

INTRODUCTION

The first recognized encounter with RNA silencing: petunia plants were transformed with petunia chalcone synthase (CHS) gene in order to obtain increased flower pigmentation due to overexpression of the CHS gene (Napoli, 1990; van der Krol et al., 1990).

CHS mRNA levels were strongly reduced in the white sectors.

This phenomenon was termed as 'co-suppression'.

Two years later, another encounter with RNA silencing was made in the field of virus resistance (de Haan et al., 1992; Lindbo and Dougherty, 1992; van der Viugt et al., 1992).

virus resistance was correlated with reduction of transgene mRNA in the cytoplasm.

Lindbo and co-workers (1993) proposed this phenomenon to be similar to co-suppression.

 The observation was that a silenced transgene could prevent virus accumulation of potato virus X (PVX) carrying same transgene sequences.

That pointed toward a sequence specific antiviaral defense mechanism (English et al., 1996),

what was then called **post-transcriptional gene silencing** (PTGS).

- PTGS also cross-protect the plant against other viruses carrying homologous sequences (Ratcliff et al., 1999).
- viral RNA-mediated cross protection was caused by the same mechanism as transgene induced PTGS.
- These phenomenons are now generally known as virus-induced gene silencing (VIGS) which explain the mystery of Wingard's finding.

The RNA silencing pathway is regulated by the following components:

Dicer: a RNase III like enzyme, required to produce siRNA and miRNA from perfect and near-perfect dsRNA respectively (Bartel, 2004 and Baulcombe, 2004).

RNA-induced silencing complex (RISC): Agronaute protein (AGO) is a core component and exhibits structural similarity to RNase H (Bartel, 2004; Hall, 2005; Tomari and Zamore, 2005).

dsRNA binding protein (DRB): required for loading of small RNA into RISC (Adenot et al, 2006; Nakazawa et al, 2007).

RNA-dependent RNA polymerase (RDR): Unlike miRNA, siRNAs are amplified in plants in a process that requires hostRDR (Baulcombe, 2004).

Previously mentioned proteins are often encoded by **multigene** families in several organisms

Arabidopsis thaliana encodes :

4 Dicer-like proteins (DCLs)
10 Agronautes (AGOs)
5 DRBs
6 RDRs (Juan et al., 2008).

There is functional redundancy among DCLs

In the plant cell RNA silencing, that act as antiviral defence during infection of virus and sub-viral pathogens, termed as virus induced gene silencing (VIGS).

The accumulation of virus derived siRNAs – the hallmark of gene silencing – in virus infected tissues

indicate the activation of VIGS

High levels of siRNA correlate with the activity of VIGS

lower viral titre and in some cases, immunity or recovery in upper non-inoculated leaves (Ratcliff et al., 1997; Szittya et al., 2002)

Possible Primary Source of dsRNA: Inducer of VIGS in Virus Infected Plants

TINDICATES THE FORMATION OF DESIGNA DURING VIRAL REPLICATION CYCLE

In Case of DNA Virus and Viroids

Mechanism of Antiviral Silencing in Plants

Antiviral VIGS Pathway in Nucleus

Antiviral VIGS Pathway in Cytoplasm

In plants, indirect evidence indicates

Voinnet et al., 1998	————————————————————————————————————			
ilton et al., 2002	Ham	ant silencing machinery has the unique ability to produce nt siRNA ————————————————————————————————————		

But recent genetic study revealed that long range cell-to-cell
communication of the silencing signal proceeds
through the relay amplification of short distance signalling
events, which require *de novo* synthesis of secondaryHimber et al., 200321 nt siRNAs produced by transitivity .Himber et al., 2003

Model of cell-to-cell Movement of RNA Silencing

Plasmodesmata

Ρ

Due to highly adaptive, specific and systemic nature, RNA silencing can therefore be seen as a form of Genetic Immunity System The discovery of viral RNA silencing suppressor gave a first hint on how viruses could counteract the plant defence.

Initial work showed that the potyvirus-encoded HcPro enhances the replication of many unrelated viruses (Pruss et a., 1997; Kasschau et al., 1997).

HcPro inhibits RNA silencing

Over 30 VSRs have been identified from different RNA and DNA viruses (Li et al., 2002).

- VSR function is conserved among homologous viral group
- b do not share any sequence homology among different viral groups
- have different other functions in the virus life cycle
- evolved independently in different groups (Burgyan, 2006)

RNA silencing suppressors encoded by plant viruses							
Viral Family	Virus	Suppressors	Other Functions				
Positive-strand RNA viruses							
Carmovirus	Turnip crinkle virus	P38	Coat protein				
Cucumovirus	Cucumber mosaic virus Tomato aspermy virus	2b	Host-specific movement				
Closterovirus	Beet yellows virus Citrus tristeza virus	P21 P20 P23 CP	Replication enhancer Replication enhancer Nucleic-acid binding Coat protein				
Comovirus	Cowpea mosaic virus	S protein	Small coat protein				
Polerovirus	Beet western yellows virus; Cucurbit aphid-borne yellos virus	PO	pathogenicity determinant				
Potexvirus	Potato virus X	P25	Movement				
Potyvirus	Potato virus Y	HcPro	Movement; polyprotein processing; aphid transmission; pathogenicity determinant				
Sobemovirus	Rice yellow mottle virus	P1	Movement; pathogenicity determinant				
Tombusvirus	Tomato bushy stunt virus; Cymbidium ringspot virus; Carnation Italian ringspot virus	P19	Movement; pathogenicity determinant				
Tobamovirus	Tobaccomosaic virus; Tomato mosaic virus	P30	Replication				
Tymovirus	Turnip yellow mosaic virus	P69	Movement; pathogenicity determinant				

RNA silencing suppressors encoded by plant viruses

Negative-strand RNA virus

Tospovirus Tenuivirus	Tomato spotted wilt virus Rice hoja blanca virus	NSs NS3	pathogenicity determinant Unknown
Double stranded RNA	virus		
Phytoreovirus	Rice dwarf virus	Pns10	Unknwn
DNA virus			
Geminivirus	African cassava mosaic virus Tomato yellow leaf curl virus Mungbean yellow mosaic virus	AC2 C2 C2	Transcriptional Activator Protein (TrAP)

Molecular Basis of Silencing Suppression

a. Unproductive siRNA molecules

b. Defective siRNA molecules

It is well established that the antiviral and endogenous silencing pathways share common elements (e.g.: endogenous small regulatory RNAs such as si-, tasi- and ds miRNA intermediates) and silencing suppressors often interact with these common elements.

virus-induced symptoms are the consequences of the interaction of silencing suppressors and endogenous RNA silencing-mediated developmental pathways

presence of the silencing suppressor is essential for the development of systemic virus infection.

VSRs do not always play a direct role in eliciting the disease symptoms. (Deleris et al., 2006)

Used as a technology for functional genomics

Vectors	Plant species	Vector induced symptoms	Developed for large scale analysis
Tobacco mosaic virus	Nicotiana benthamiana	Variable	Yes
Potato virus X	Nicotiana benthamiana	Variable	Yes
Tobacco rattle virus	Nicotiana benthamiana	Mild	Yes
	Arabidopsis, Tomato		
TMV satellite virus- induced silencing system	Tobacco	Mild	Νο
Barley stripe mosaic virus	Barley	Moderate	Yes
Cabbage leaf curl virus	Arabidopsis	Variable	Νο
Tomato golden mosaic virus	Nicotiana benthamiana	Variable	Νο

Used as a new approach for transgenic plant development

Transgenic plant	Virus	Developed by
Торассо	PVY	Waterhouse et al., 1998
Торассо	African cassava mosaic virus	Vanitharani et al., 2003
Торассо	Pepper mild mottle virus Plum pox virus	Tenllado et al., 2003
Tobacco Tomato	Tomato yellow leaf curl virus	Abhary et al., 2006
Rice (PB1)	RTBV	Tyagi et al., 2008

